Online reconstruction of 3D objects from arbitrary cross-sections

  • Authors:
  • Amit Bermano;Amir Vaxman;Craig Gotsman

  • Affiliations:
  • Technion -- Israel Institute of Technology, Israel;Technion -- Israel Institute of Technology, Israel;Technion -- Israel Institute of Technology, Israel

  • Venue:
  • ACM Transactions on Graphics (TOG)
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a simple algorithm to reconstruct the surface of smooth three-dimensional multilabeled objects from sampled planar cross-sections of arbitrary orientation. The algorithm has the unique ability to handle cross-sections in which regions are classified as being inside the object, outside the object, or unknown. This is achieved by constructing a scalar function on R3, whose zero set is the desired surface. The function is constructed independently inside every cell of the arrangement of the cross-section planes using transfinite interpolation techniques based on barycentric coordinates. These guarantee that the function is smooth, and its zero set interpolates the cross-sections. The algorithm is highly parallelizable and may be implemented as an incremental update as each new cross-section is introduced. This leads to an efficient online version, performed on a GPU, which is suitable for interactive medical applications.