Benaloh's dense probabilistic encryption revisited

  • Authors:
  • Laurent Fousse;Pascal Lafourcade;Mohamed Alnuaimi

  • Affiliations:
  • Université Grenoble 1, CNRS, Laboratoire Jean Kuntzmann, France;Université Grenoble 1, CNRS, Verimag, France;Global Communication & Software Systems, United Arab Emirates

  • Venue:
  • AFRICACRYPT'11 Proceedings of the 4th international conference on Progress in cryptology in Africa
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In 1994, Josh Benaloh proposed a probabilistic homomorphic encryption scheme, enhancing the poor expansion factor provided by Goldwasser and Micali's scheme. Since then, numerous papers have taken advantage of Benaloh's homomorphic encryption function, including voting schemes, private multi-party trust computation, non-interactive verifiable secret sharing, online poker. In this paper we show that the original description of the scheme is incorrect, because it can result in ambiguous decryption of ciphertexts. Then we show on several applications that a bad choice in the key generation phase of Benaloh's scheme has a real impact on the behaviour of the application. For instance in an e-voting protocol, it can inverse the result of an election. Our main contribution is a corrected description of the scheme (we provide a complete proof of correctness). Moreover we also compute the probability of failure of the original scheme. Finally we show how to formulate the security of the corrected scheme in a generic setting suitable for several homomorphic encryptions.