Generalized dictionary learning for symmetric positive definite matrices with application to nearest neighbor retrieval

  • Authors:
  • Suvrit Sra;Anoop Cherian

  • Affiliations:
  • MPI for Intelligent Systems, Tübingen, Germany;University of Minnesota, Twin Cities, Minneapolis

  • Venue:
  • ECML PKDD'11 Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We introduce Generalized Dictionary Learning (GDL), a simple but practical framework for learning dictionaries over the manifold of positive definite matrices. We illustrate GDL by applying it to Nearest Neighbor (NN) retrieval, a task of fundamental importance in disciplines such as machine learning and computer vision. GDL distinguishes itself from traditional dictionary learning approaches by explicitly taking into account the manifold structure of the data. In particular, GDL allows performing "sparse coding" of positive definite matrices, which enables better NN retrieval. Experiments on several covariance matrix datasets show that GDL achieves performance rivaling state-of-the-art techniques.