CloudScale: elastic resource scaling for multi-tenant cloud systems

  • Authors:
  • Zhiming Shen;Sethuraman Subbiah;Xiaohui Gu;John Wilkes

  • Affiliations:
  • North Carolina State University;North Carolina State University;North Carolina State University;Google Mountain View, CA

  • Venue:
  • Proceedings of the 2nd ACM Symposium on Cloud Computing
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Elastic resource scaling lets cloud systems meet application service level objectives (SLOs) with minimum resource provisioning costs. In this paper, we present CloudScale, a system that automates fine-grained elastic resource scaling for multi-tenant cloud computing infrastructures. CloudScale employs online resource demand prediction and prediction error handling to achieve adaptive resource allocation without assuming any prior knowledge about the applications running inside the cloud. CloudScale can resolve scaling conflicts between applications using migration, and integrates dynamic CPU voltage/frequency scaling to achieve energy savings with minimal effect on application SLOs. We have implemented CloudScale on top of Xen and conducted extensive experiments using a set of CPU and memory intensive applications (RUBiS, Hadoop, IBM System S). The results show that CloudScale can achieve significantly higher SLO conformance than other alternatives with low resource and energy cost. CloudScale is non-intrusive and light-weight, and imposes negligible overhead (