Transactional auto scaler: elastic scaling of in-memory transactional data grids

  • Authors:
  • Diego Didona;Paolo Romano;Sebastiano Peluso;Francesco Quaglia

  • Affiliations:
  • Instituto Superior Técnico / INESC-ID, Lisbon, Portugal;Instituto Superior Técnico / INESC-ID, Lisbon, Portugal;Sapienza, Università di Roma, Rome, Italy;Sapienza, Università di Roma, Rome, Italy

  • Venue:
  • Proceedings of the 9th international conference on Autonomic computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we introduce TAS (Transactional Auto Scaler), a system for automating elastic-scaling of in-memory transactional data grids, such as NoSQL data stores or Distributed Transactional Memories. Applications of TAS range from on-line self-optimization of in-production applications to automatic generation of QoS/cost driven elastic scaling policies, and support for what-if analysis on the scalability of transactional applications. The key innovation at the core of TAS is a novel performance forecasting methodology that relies on the joint usage of analytical modeling and machine-learning. By exploiting these two, classically competing, methodologies in a synergic fashion, TAS achieves the best of the two worlds, namely high extrapolation power and good accuracy even when faced with complex workloads deployed over public cloud infrastructures. We demonstrate the accuracy and feasibility of TAS via an extensive experimental study based on a fully fledged prototype implementation, integrated with a popular open-source transactional in-memory data store (Red Hat's Infinispan), and industry-standard benchmarks generating a breadth of heterogeneous workloads.