Lossy links, low power, high throughput

  • Authors:
  • Simon Duquennoy;Fredrik Österlind;Adam Dunkels

  • Affiliations:
  • Swedish Institute of Computer Science, Kista, Sweden;Swedish Institute of Computer Science, Kista, Sweden;Swedish Institute of Computer Science, Kista, Sweden

  • Venue:
  • Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

As sensor networks move towards general-purpose low-power wireless networks, there is a need to support both traditional low-data rate traffic and high-throughput transfer. To attain high throughput, existing protocols monopolize the network resources and keep the radio on for all nodes involved in the transfer, leading to poor energy efficiency. This becomes progressively problematic in networks with packet loss, which inevitably occur in any real-world deployment. We present burst forwarding, a generic packet forwarding technique that combines low power consumption with high throughput for multi-purpose wireless networks. Burst forwarding uses radio duty cycling to maintain a low power consumption, recovers efficiently from interference, and inherently supports both single streams and cross-traffic. We experimentally evaluate our mechanism under heavy interference and compare it to PIP, a state-of-the-art sensornet bulk transfer protocol. Burst forwarding gracefully adapts radio duty cycle both to the level of interference and to traffic load, keeping a low and nearly constant energy cost per byte when carrying TCP traffic.