Non-rigid isometric ICP: A practical registration method for the analysis and compensation of form errors in production engineering

  • Authors:
  • A. Sacharow;J. Balzer;D. Biermann;T. Surmann

  • Affiliations:
  • Institute of Machining Technology, Technische Universität Dortmund, BaroperStrasse301, 44227 Dortmund, Germany;4700 King Abdullah University of Science and Technology, PO Box 2050, Thuwal 23955-6900, Saudi Arabia;Institute of Machining Technology, Technische Universität Dortmund, BaroperStrasse301, 44227 Dortmund, Germany;Institute of Machining Technology, Technische Universität Dortmund, BaroperStrasse301, 44227 Dortmund, Germany

  • Venue:
  • Computer-Aided Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The unprecedented success of the iterative closest point (ICP) method for registration in geometry processing and related fields can be attributed to its efficiency, robustness, and wide spectrum of applications. Its use is however quite limited as soon as the objects to be registered arise from each other by a transformation significantly different from a Euclidean motion. We present a novel variant of ICP, tailored for the specific needs of production engineering, which registers a triangle mesh with a second surface model of arbitrary digital representation. Our method inherits most of ICP's practical advantages but is capable of detecting medium-strength bendings i.e. isometric deformations. Initially, the algorithm assigns to all vertices in the source their closest point on the target mesh and then iteratively establishes isometry, a process which, very similar to ICP, requires intermediate re-projections. A NURBS-based technique for applying the resulting deformation to arbitrary instances of the source geometry, other than the very mesh used for correspondence estimation, is described before we present numerical results on synthetic and real data to underline the viability of our approach in comparison with others.