Rational behaviour and strategy construction in infinite multiplayer games

  • Authors:
  • Michael Ummels

  • Affiliations:
  • Mathematische Grundlagen der Informatik, RWTH Aachen, Germany

  • Venue:
  • FSTTCS'06 Proceedings of the 26th international conference on Foundations of Software Technology and Theoretical Computer Science
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study infinite games played by arbitrarily many players on a directed graph. Equilibrium states capture rational behaviour in these games. Instead of the well-known notion of a Nash equilibrium, we focus on the notion of a subgame perfect equilibrium. We argue that the latter one is more appropriate for the kind of games we study, and we show the existence of a subgame perfect equilibrium in any infinite game with ω-regular winning conditions. As, in general, equilibria are not unique, it is appealing to compute one with a maximal payoff. This problem corresponds naturally to the problem of deciding given a game and two payoff vectors whether the game has an equilibrium with a payoff in between the given thresholds. We show that this problem is decidable for games with ω-regular winning conditions played on a finite graph and analyse its complexity. Moreover, we establish that any subgame perfect equilibrium of a game with ω-regular winning conditions played on a finite graph can be implemented by finite-state strategies. Finally, we consider logical definability. We state that if we fix the number of players together with an ω-regular winning condition for each of them and two payoff vectors the property that a game has a subgame perfect equilibrium with a payoff in between the given thresholds is definable in the modal μ-calculus.