On computational properties of template-guided DNA recombination

  • Authors:
  • Mark Daley;Ian McQuillan

  • Affiliations:
  • Department of Computer Science and Department of Biology, University of Western Ontario, London, Ontario, Canada;Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

  • Venue:
  • DNA'05 Proceedings of the 11th international conference on DNA Computing
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The stichotrichous ciliates have attracted the attention of both biologists and computer scientists due to the unique genetic mechanism of gene descrambling. It has been suggested that it would perhaps be possible to co-opt this genetic process and use it to perform arbitrary computations in vivo. Motivated by this idea, we study here some basic properties and the computational power of a formalization inspired by the template-guided recombination model of gene descrambling proposed by Ehrenfeucht, Prescott and Rozenberg. We demonstrate that the computational power of a system based on template-guided recombination is quite limited. We then extend template-guided recombination systems with the addition of “deletion contexts” and show that such systems have strictly greater computational power than splicing systems [1, 2].