Approximate reachability computation for polynomial systems

  • Authors:
  • Thao Dang

  • Affiliations:
  • Centre Equation, VERIMAG, Gières, France

  • Venue:
  • HSCC'06 Proceedings of the 9th international conference on Hybrid Systems: computation and control
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we propose an algorithm for approximating the reachable sets of systems defined by polynomial differential equations. Such systems can be used to model a variety of physical phenomena. We first derive an integration scheme that approximates the state reachable in one time step by applying some polynomial map to the current state. In order to use this scheme to compute all the states reachable by the system starting from some initial set, we then consider the problem of computing the image of a set by a multivariate polynomial. We propose a method to do so using the Bézier control net of the polynomial map and the blossoming technique to compute this control net. We also prove that our overall method is of order 2. In addition, we have successfully applied our reachability algorithm to two models of a biological system.