Image Computation for Polynomial Dynamical Systems Using the Bernstein Expansion

  • Authors:
  • Thao Dang;David Salinas

  • Affiliations:
  • Verimag, Gières, France 38610;Verimag, Gières, France 38610

  • Venue:
  • CAV '09 Proceedings of the 21st International Conference on Computer Aided Verification
  • Year:
  • 2009

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper is concerned with the problem of computing the image of a set by a polynomial function. Such image computations constitute a crucial component in typical tools for set-based analysis of hybrid systems and embedded software with polynomial dynamics, which found applications in various engineering domains. One typical example is the computation of all states reachable from a given set in one step by a continuous dynamics described by a differential or difference equation. We propose a new algorithm for over-approximating such images based on the Bernstein expansion of polynomial functions. The images are stored using template polyhedra. Using a prototype implementation, the performance of the algorithm was demonstrated on two practical systems as well as a number of randomly generated examples.