Performance modeling of epidemic routing

  • Authors:
  • Xiaolan Zhang;Giovanni Neglia;Jim Kurose;Don Towsley

  • Affiliations:
  • University of Massachusetts, Amherst, MA;Università degli Studi di Palermo;University of Massachusetts, Amherst, MA;University of Massachusetts, Amherst, MA

  • Venue:
  • NETWORKING'06 Proceedings of the 5th international IFIP-TC6 conference on Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems
  • Year:
  • 2006

Quantified Score

Hi-index 0.01

Visualization

Abstract

In this paper, we develop a rigorous, unified framework based on Ordinary Differential Equations (ODEs) to study epidemic routing and its variations. These ODEs can be derived as limits of Markovian models under a natural scaling as the number of nodes increases. While an analytical study of Markovian models is quite complex and numerical solution impractical for large networks, the corresponding ODE models yield closed-form expressions for several performance metrics of interest, and a numerical solution complexity that does not increase with the number of nodes. Using this ODE approach, we investigate how resources such as buffer space and power can be traded for faster delivery, illustrating the differences among the various epidemic schemes considered. Finally we consider the effect of buffer management by complementing the forwarding models with Markovian and fluid buffer models.