Aggregation of multiple judgments for evaluating ordered lists

  • Authors:
  • Hyun Duk Kim;ChengXiang Zhai;Jiawei Han

  • Affiliations:
  • Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL;Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL;Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL

  • Venue:
  • ECIR'2010 Proceedings of the 32nd European conference on Advances in Information Retrieval
  • Year:
  • 2010

Quantified Score

Hi-index 0.02

Visualization

Abstract

Many tasks (e.g., search and summarization) result in an ordered list of items. In order to evaluate such an ordered list of items, we need to compare it with an ideal ordered list created by a human expert for the same set of items. To reduce any bias, multiple human experts are often used to create multiple ideal ordered lists. An interesting challenge in such an evaluation method is thus how to aggregate these different ideal lists to compute a single score for an ordered list to be evaluated. In this paper, we propose three new methods for aggregating multiple order judgments to evaluate ordered lists: weighted correlation aggregation, rank-based aggregation, and frequent sequential pattern-based aggregation. Experiment results on ordering sentences for text summarization show that all the three new methods outperform the state of the art average correlation methods in terms of discriminativeness and robustness against noise. Among the three proposed methods, the frequent sequential pattern-based method performs the best due to the flexible modeling of agreements and disagreements among human experts at various levels of granularity.