Online stochastic matching: online actions based on offline statistics

  • Authors:
  • Vahideh H. Manshadi;Shayan Oveis Gharan;Amin Saberi

  • Affiliations:
  • Stanford University, Stanford, CA;Stanford University, Stanford, CA;Stanford University, Stanford, CA

  • Venue:
  • Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We consider the online stochastic matching problem proposed by Feldman et al. [4] as a model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds to a fixed set of bins and the other side represents the set of possible ball types. At each time step, a ball is sampled independently from the given distribution and it needs to be matched upon its arrival to an empty bin. The goal is to maximize the size of the matching. We present an online algorithm for this problem with a competitive ratio of 0.702. Before our result, algorithms with a competitive ratio better than 1−1/e were known under the assumption that the expected number of arriving balls of each type is integral. A key idea of the algorithm is to collect statistics about the decisions of the optimum offline solution using Monte Carlo sampling and use those statistics to guide the decisions of the online algorithm. We also show that no online algorithm can have a competitive ratio better than 0.823.