Online budgeted matching in random input models with applications to Adwords

  • Authors:
  • Gagan Goel;Aranyak Mehta

  • Affiliations:
  • Georgia Institue of Technology, Atlanta GA;Google, Inc., Mountain View, CA

  • Venue:
  • Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study an online assignment problem, motivated by Adwords Allocation, in which queries are to be assigned to bidders with budget constraints. We analyze the performance of the Greedy algorithm (which assigns each query to the highest bidder) in a randomized input model with queries arriving in a random permutation. Our main result is a tight analysis of Greedy in this model showing that it has a competitive ratio of 1 - 1/e for maximizing the value of the assignment. We also consider the more standard i.i.d. model of input, and show that our analysis holds there as well. This is to be contrasted with the worst case analysis of [MSVV05] which shows that Greedy has a ratio of 1/2, and that the optimal algorithm presented there has a ratio of 1 - 1/e. The analysis of Greedy is important in the Adwords setting because it is the natural allocation algorithm for an auction-style process. From a theoretical perspective, our result simplifies and generalizes the classic algorithm of Karp, Vazirani and Vazirani for online bipartite matching. Our results include a new proof to show that the Ranking alforithm of [KVV90] has a ratio of 1 - 1/e in the worst case. It has been recently discovered [KV07] (independent of our results) that one of the crucial lemmas in [KVV90], related to a certain reduction, is incorrect. Our proof is direct, in that it does not go via such a reduction, which also enables us to generalize the analysis to our online assignment problem.