Inverse global illumination rendering for dense estimation of surface reflectance properties

  • Authors:
  • Takashi Machida;Naokazu Yokoya;Haruo Takemura

  • Affiliations:
  • Osaka University, Osaka, Japan;Nara Institute of Science and Technology, Nara, Japan;Osaka University, Osaka, Japan

  • Venue:
  • SCIA'05 Proceedings of the 14th Scandinavian conference on Image Analysis
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates the problem of object surface reflectance modeling, which is sometimes referred to as inverse reflectometry, for photorealistic rendering and effective multimedia applications. A number of methods have been developed for estimating object surface reflectance properties in order to render real objects under arbitrary illumination conditions. However, it is still difficult to densely estimate surface reflectance properties faithfully for complex objects with interreflections. This paper describes a new method for densely estimating the non-uniform surface reflectance properties of real objects constructed of convex and concave surfaces. Specifically, we use registered range and surface color texture images obtained by a laser rangefinder. Then, we determine the positions of light sources in order to capture color images to be used in discriminating diffuse and specular reflection components of surface reflection. The proposed method can densely estimate the reflectance parameters of objects with diffuse and specular interreflections based on an inverse global illumination rendering. Experiments are conducted in order to demonstrate the usefulness and the advantage of the proposed methods through comparative study.