Evolution of robot controller using cartesian genetic programming

  • Authors:
  • Simon Harding;Julian F. Miller

  • Affiliations:
  • Department Of Electronics, University of York, UK;Department Of Electronics, University of York, UK

  • Venue:
  • EuroGP'05 Proceedings of the 8th European conference on Genetic Programming
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cartesian Genetic Programming is a graph based representation that has many benefits over traditional tree based methods, including bloat free evolution and faster evolution through neutral search. Here, an integer based version of the representation is applied to a traditional problem in the field: evolving an obstacle avoiding robot controller. The technique is used to rapidly evolve controllers that work in a complex environment and with a challenging robot design. The generalisation of the robot controllers in different environments is also demonstrated. A novel fitness function based on chemical gradients is presented as a means of improving evolvability in such tasks.