GECCO 2011 tutorial: cartesian genetic programming

  • Authors:
  • Julian F. Miller;Simon L. Harding

  • Affiliations:
  • University of York, York, United Kingdom;IDSIA, Lugano, UNK, Switzerland

  • Venue:
  • Proceedings of the 13th annual conference companion on Genetic and evolutionary computation
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Cartesian Genetic Programming (CGP) is an increasingly popular and efficient form of Genetic Programming that was developed by Julian Miller in 1999 and 2000. In its classic form, it uses a very simple integer based genetic representation of a program in the form of a directed graph. Graphs are very useful program representations and can be applied to many domains (e.g. electronic circuits, neural networks). In a number of studies, CGP has been shown to be comparatively efficient to other GP techniques. It is also very simple to program. Since then, the classical form of CGP has been developed made more efficient in various ways. Notably by including automatically defined functions (modular CGP) and self-modification operators(self-modifying CGP). SMCGP was developed by Julian Miller, Simon Harding and Wolfgang Banzhaf. It uses functions that cause the evolved programs to change themselves as a function of time. Using this technique it is possible to find general solutions to classes of problems and mathematical algorithms (e.g. arbitrary parity, n-bit binary addition, sequences that provably compute pi and e to arbitrary precision, and so on). The tutorial will cover the basic technique, advanced developments and applications to a variety of problem domains.