Algorithm engineering for optimal graph bipartization

  • Authors:
  • Falk Hüffner

  • Affiliations:
  • Institut für Informatik, Friedrich-Schiller-Universität Jena, Jena

  • Venue:
  • WEA'05 Proceedings of the 4th international conference on Experimental and Efficient Algorithms
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We examine exact algorithms for the NP-complete Graph Bipartization problem that asks for a minimum set of vertices to delete from a graph to make it bipartite. Based on the “iterative compression” method recently introduced by Reed, Smith, and Vetta, we present new algorithms and experimental results. The worst-case time complexity is improved from O(3k · kmn) to O(3k · mn), where n is the number of vertices, m is the number of edges, and k is the number of vertices to delete. Our best algorithm can solve all problems from a testbed from computational biology within minutes, whereas established methods are only able to solve about half of the problems within reasonable time.