Optimizing the configuration of dynamic voltage scaling points in real-time applications

  • Authors:
  • Huizhan Yi;Xuejun Yang

  • Affiliations:
  • Section 620, School of Computer, National University of Defense Technology, Hunan, Changsha, P.R. China;Section 620, School of Computer, National University of Defense Technology, Hunan, Changsha, P.R. China

  • Venue:
  • PATMOS'05 Proceedings of the 15th international conference on Integrated Circuit and System Design: power and Timing Modeling, Optimization and Simulation
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Compiler-directed dynamic voltage scaling (DVS) is an effective low-power technique in real-time applications, where compiler inserts voltage scaling points in a real-time application, and supply voltage and clock frequency are adjusted to the relationship between the remaining time and remaining workload at each voltage scaling point. In this paper we present the analytical energy model of proportional dynamic voltage scaling in real-time applications. Using the analytical model, we theoretically prove the optimal configuration of voltage scaling points that minimizes energy consumption. Furthermore, in order to seek the optimal configuration taking into account voltage scaling overhead in the most frequent execution case, we propose a configuration methodology, where a profile-based method constructs the abstract execution pattern of an application, voltage scaling points are inserted into the abstract execution pattern by the optimal configuration without taking into account voltage scaling overhead, and then we can find the optimal configuration considering voltage scaling overhead by deleting some voltage scaling points from the execution pattern. Finally, the remaining points are inserted into the application by compiler. The simulation results show that, when taking into account voltage scaling overhead, the configuration methodology reduces energy consumption efficiently.