A pipelined hardware architecture for motion estimation of H.264/AVC

  • Authors:
  • Su-Jin Lee;Cheong-Ghil Kim;Shin-Dug Kim

  • Affiliations:
  • Dept. of Computer Science, Yonsei University, Seoul, Korea;Dept. of Computer Science, Yonsei University, Seoul, Korea;Dept. of Computer Science, Yonsei University, Seoul, Korea

  • Venue:
  • ACSAC'05 Proceedings of the 10th Asia-Pacific conference on Advances in Computer Systems Architecture
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The variable block size motion estimation (VBSME) presented in the video coding standard H.264/AVC significantly improves coding efficiency, but it requires much more considerable computational complexity than motion estimation using fixed macroblocks. To solve this problem, this paper proposes a pipelined hardware architecture for full-search VBSME aiming for high performance, simple structure, and small controls. Our architecture consists of 1-D arrays with 64 processing elements, an adder tree to produce motion vectors (MVs) for variable block sizes, and comparators to determine the minimum of MVs. This can produce all 41 MVs for variable blocks of one macroblock in the same clock cycles to other conventional 1-D arrays of 64 PEs. In addition, this can be easily controlled by a 2-bit counter. Implementation results show that our architecture can estimate MVs in CIF video sequence at a rate of 106 frames/s for the 32×32 search range.