Computing a family of skeletons of volumetric models for shape description

  • Authors:
  • Tao Ju;Matthew L. Baker;Wah Chiu

  • Affiliations:
  • Washington University, St. Louis, MO;Baylor College of Medicine, Houston, TX;Baylor College of Medicine, Houston, TX

  • Venue:
  • GMP'06 Proceedings of the 4th international conference on Geometric Modeling and Processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Skeletons are important shape descriptors in object representation and recognition. Typically, skeletons of volumetric models are computed via an iterative thinning process. However, traditional thinning methods often generate skeletons with complex structures that are unsuitable for shape description, and appropriate pruning methods are lacking. In this paper, we present a new method for computing skeletons on volumes by alternating thinning and a novel skeleton pruning routine. Our method creates a family of skeletons parameterized by two user-specified numbers that determine respectively the size of curve and surface features on the skeleton. As demonstrated on both real-world models and medical images, our method generates skeletons with simple and meaningful structures that are particularly suitable for describing cylindrical and plate-like shapes.