Low-Overhead, high-speed multi-core barrier synchronization

  • Authors:
  • John Sartori;Rakesh Kumar

  • Affiliations:
  • Coordinated Science Laboratory, University of Illinois at Urbana-Champaign;Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

  • Venue:
  • HiPEAC'10 Proceedings of the 5th international conference on High Performance Embedded Architectures and Compilers
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Whereas efficient barrier implementations were once a concern only in high-performance computing, recent trends in core integration make the topic relevant even for general-purpose CMPs. While the nature of CMP applications requires low-latency, the cost of low-latency barrier implementations using hardware-based techniques can be prohibitive for CMPs, where die area represents opportunities for throughput and yield. Similarly, whereas traditional multiprocessor barrier implementations were developed primarily for dedicated environments, scheduling and multi-programming on CMPs require more adaptable barrier implementations. In this paper, we present and evaluate three barrier implementations that are hybrids of software and dedicated hardware barriers and are specifically tailored for CMPs. The implementations leverage the unique characteristics of CMPs and provide low latency comparable to that of dedicated hardware networks at a fraction of the cost. The implementations also support adaptability, enabling efficient multi-programming and dynamic remapping of the barrier network.