Modeling internet security investments: tackling topological information uncertainty

  • Authors:
  • Ranjan Pal;Pan Hui

  • Affiliations:
  • University of Southern California;Deutsch Telekom Laboratories, Berlin, Germany

  • Venue:
  • GameSec'11 Proceedings of the Second international conference on Decision and Game Theory for Security
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern distributed communication networks like the Internet are characterized by nodes (Internet users) interconnected with one another via communication links. In this regard, the security of individual nodes depend not only on their own efforts, but also on the efforts and underlying connectivity structure of neighboring network nodes. By the term ‘effort', we imply the amount of investments made by a user in security mechanisms like antivirus softwares, firewalls, etc., to improve his security. However, often due to the large magnitude of such networks, it is not always possible for nodes to have complete effort and connectivity structure information about all their neighbor nodes. Added to this is the fact that in many applications, the Internet users are selfish and are not willing to co-operate with other users on sharing effort information. In this paper, we adopt a non-cooperative game-theoretic approach to analyze individual user security in a communication network by accounting for both, the partial information that a network node possess about its underlying neighborhood connectivity structure and security investment of its neighbors, as well as the presence of positive externalities arising from efforts exerted by neighboring nodes. We analyze the strategic interactions between Internet users on their security investments in order to investigate the equilibrium behavior of nodes and show (i) the existence of monotonic symmetric Bayesian Nash equilibria of efforts and (ii) better connected Internet users choose lower efforts to exert but earn higher utilities than less connected peers with respect to security improvement when user utility functions exhibit strategic substitutes, i.e, are submodular. Our results extend previous work with respect to tackling topological information uncertainty, and provide useful insights to Internet users on appropriately (from improving payoffs perspective) investing in security mechanisms under realistic environments of effort and topological information uncertainty, in order to improve system security and welfare. We also discuss the implications of our results on the parameters of risk management techniques like cyber-insurance, and compare the user investment behavior in the incomplete information case with the case when users have increased topological information of their network.