Optimization of Shared High-Performance Reconfigurable Computing Resources

  • Authors:
  • Melissa C. Smith;Gregory D. Peterson

  • Affiliations:
  • Clemson University;University of Tennessee

  • Venue:
  • ACM Transactions on Embedded Computing Systems (TECS)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the field of high-performance computing, systems harboring reconfigurable devices, such as field-programmable gate arrays (FPGAs), are gaining more widespread interest. Such systems range from supercomputers with tightly coupled reconfigurable hardware to clusters with reconfigurable devices at each node. The use of these architectures for scientific computing provides an alternative for computationally demanding problems and has advantages in metrics, such as operating cost/performance and power/performance. However, performance optimization of these systems can be challenging even with knowledge of the system’s characteristics. Our analytic performance model includes parameters representing the reconfigurable hardware, application load imbalance across the nodes, background user load, basic message-passing communication, and processor heterogeneity. In this article, we provide an overview of the analytical model and demonstrate its application for optimization and scheduling of high-performance reconfigurable computing (HPRC) resources. We examine cost functions for minimum runtime and other optimization problems commonly found in shared computing resources. Finally, we discuss additional scheduling issues and other potential applications of the model.