Process variation in near-threshold wide SIMD architectures

  • Authors:
  • Sangwon Seo;Ronald G. Dreslinski;Mark Woh;Yongjun Park;Chaitali Charkrabari;Scott Mahlke;David Blaauw;Trevor Mudge

  • Affiliations:
  • University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;Arizona State University, Tempe, AZ;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI;University of Michigan, Ann Arbor, MI

  • Venue:
  • Proceedings of the 49th Annual Design Automation Conference
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Near-threshold operation has emerged as a competitive approach for energy-efficient architecture design. In particular, a combination of near-threshold circuit techniques and parallel SIMD computations achieves excellent energy efficiency for easy-to-parallelize applications. However, near-threshold operations suffer from delay variations due to increased process variability. This is exacerbated in wide SIMD architectures where the number of critical paths are multiplied by the SIMD width. This paper provides a systematic in-depth study of delay variations in near-threshold operations and shows that simple techniques such as structural duplication and supply voltage/frequency margining are sufficient to mitigate the timing variation problems in wide SIMD architectures at the cost of marginal area and power overhead.