Enlarging the domain of attraction of MPC controllers

  • Authors:
  • D. Limon;T. Alamo;E. F. Camacho

  • Affiliations:
  • Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain;Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n. 41092 Sevilla, Spain

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2005

Quantified Score

Hi-index 22.15

Visualization

Abstract

This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an enlargement without an extra cost. In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the computation of the sequence. This strategy guarantees closed loop-stability ensuring the enlargement of the domain of attraction and the local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.