Reducing elliptic curve logarithms to logarithms in a finite field

  • Authors:
  • A. J. Menezes;T. Okamoto;S. A. Vanstone

  • Affiliations:
  • Dept. of Discrete & Stat. Sci., Auburn Univ., AL;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

Elliptic curve cryptosystems have the potential to provide relatively small block size, high-security public key schemes that can be efficiently implemented. As with other known public key schemes, such as RSA and discrete exponentiation in a finite field, some care must be exercised when selecting the parameters involved, in this case the elliptic curve and the underlying field. Specific classes of curves that give little or no advantage over previously known schemes are discussed. The main result of the paper is to demonstrate the reduction of the elliptic curve logarithm problem to the logarithm problem in the multiplicative group of an extension of the underlying finite field. For the class of supersingular elliptic curves, the reduction takes probabilistic polynomial time, thus providing a probabilistic subexponential time algorithm for the former problem