Matrix co-factorization on compressed sensing

  • Authors:
  • Jiho Yoo;Seungjin Choi

  • Affiliations:
  • Department of Computer Science, Pohang University of Science and Technology, Pohang, Korea;Department of Computer Science and Division of IT Convergence Engineering, Pohang University of Science and Technology, Pohang, Korea

  • Venue:
  • IJCAI'11 Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Two
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we address the problem of matrix factorization on compressively-sampled measurements which are obtained by random projections. While this approach improves the scalability of matrix factorization, its performance is not satisfactory. We present a matrix co-factorization method where compressed measurements and a small number of uncompressed measurements are jointly decomposed, sharing a factor matrix. We evaluate the performance of three matrix factorization methods in terms of Cramér-Rao bounds, including: (1) matrix factorization on uncompressed data (MF); (2) matrix factorization on compressed data (CS-MF); (3) matrix co-factorization on compressed and uncompressed data (CS-MCF). Numerical experiments demonstrate that CS-MCF improves the performance of CS-MF, emphasizing the useful behavior of exploiting side information (a small number of uncompressed measurements).