Combining content and link for classification using matrix factorization

  • Authors:
  • Shenghuo Zhu;Kai Yu;Yun Chi;Yihong Gong

  • Affiliations:
  • NEC Laboratories America: Inc., Cupertino, CA;NEC Laboratories America: Inc., Cupertino, CA;NEC Laboratories America: Inc., Cupertino, CA;NEC Laboratories America: Inc., Cupertino, CA

  • Venue:
  • SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

The world wide web contains rich textual contents that areinterconnected via complex hyperlinks. This huge database violates the assumption held by most of conventional statistical methods that each web page is considered as an independent and identical sample. It is thus difficult to apply traditional mining or learning methods for solving web mining problems, e.g., web page classification, by exploiting both the content and the link structure. The research in this direction has recently received considerable attention but are still in an early stage. Though a few methods exploit both the link structure or the content information, some of them combine the only authority information with the content information, and the others first decompose the link structure into hub and authority features, then apply them as additional document features. Being practically attractive for its great simplicity, this paper aims to design an algorithm that exploits both the content and linkage information, by carrying out a joint factorization on both the linkage adjacency matrix and the document-term matrix, and derives a new representation for web pages in a low-dimensional factor space, without explicitly separating them as content, hub or authority factors. Further analysis can be performed based on the compact representation of web pages. In the experiments, the proposed method is compared with state-of-the-art methods and demonstrates an excellent accuracy in hypertext classification on the WebKB and Cora benchmarks.