Thermal-Driven Analog Placement Considering Device Matching

  • Authors:
  • M. P.-H. Lin;Hongbo Zhang;M. D.F. Wong;Yao-Wen Chang

  • Affiliations:
  • Dept. of Electr. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan;-;-;-

  • Venue:
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
  • Year:
  • 2011

Quantified Score

Hi-index 0.03

Visualization

Abstract

With the thermal effect, improper analog placements may degrade circuit performance because the thermal impact from power devices can affect electrical characteristics of the thermally-sensitive devices. There is not much previous work that considers the desired placement configuration between power and thermally-sensitive devices for a better thermal profile to reduce the thermally-induced mismatches. This paper first introduces the properties of a desired thermal profile for better thermal matching of the matched devices. It then presents a thermal-driven analog placement methodology to achieve the desired thermal profile and to consider the best device matching under the thermal profile while satisfying the symmetry and the common-centroid constraints. Experimental results based on real analog circuits show that the proposed approach can achieve the best analog circuit performance/accuracy with the least impact due to the thermal gradient, among existing works.