BLINK: a high throughput link layer for backscatter communication

  • Authors:
  • Pengyu Zhang;Jeremy Gummeson;Deepak Ganesan

  • Affiliations:
  • University of Massachusetts Amherst, Amherst, MA, USA;University of Massachusetts Amherst, Amherst, MA, USA;University of Massachusetts Amherst, Amherst, MA, USA

  • Venue:
  • Proceedings of the 10th international conference on Mobile systems, applications, and services
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Backscatter communication offers an ultra-low power alternative to active radios in urban sensing deployments - communication is powered by a reader, thereby making it virtually "free". While backscatter communication has largely been used for extremely small amounts of data transfer (e.g. a 12 byte EPC identifier from an RFID tag), sensors need to use backscatter for continuous and high-volume sensor data transfer. To address this need, we describe a novel link layer that exploits unique characteristics of backscatter communication to optimize throughput. Our system offers several optimizations including 1) understanding of multi-path self-interference characteristics and link metrics that capture these characteristics, 2) design of novel mobility-aware probing techniques that use backscatter link signatures to determine when to probe the channel, 3) bitrate selection algorithms that use link metrics to determine the optimal bitrate, and 4) channel selection mechanism that optimize throughput while remaining compliant within FCC regulations. Our results show upto 3x increase in goodput over other mechanisms across a wide range of channel conditions, scales, and mobility scenarios.