Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model

  • Authors:
  • Lisa Fiorentini;Andrea Serrani

  • Affiliations:
  • Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19. Ave, Columbus, OH 43210, United States;Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave, Columbus, OH 43210, United States

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2012

Quantified Score

Hi-index 22.14

Visualization

Abstract

The design of a nonlinear robust controller for a non-minimum phase model of an air-breathing hypersonic vehicle is presented in this work. When flight-path angle is selected as a regulated output and the elevator is the only control surface available for the pitch dynamics, longitudinal models of the rigid-body dynamics of air-breathing hypersonic vehicles exhibit unstable zero-dynamics that prevent the applicability of standard inversion methods for control design. The approach proposed in this paper uses a combination of small-gain arguments and adaptive control techniques for the design of a state-feedback controller that achieves asymptotic tracking of a family of velocity and flight-path angle reference trajectories belonging to a given class of vehicle maneuvers, in spite of model uncertainties. The method reposes upon a suitable redefinition of the internal dynamics of a control-oriented model of the vehicle dynamics, and uses a time-scale separation between the controlled variables to manage the peaking phenomenon occurring in the system. Simulation results on a full nonlinear vehicle model that includes structural flexibility illustrate the effectiveness of the methodology.