A comparison of temporal scalability techniques

  • Authors:
  • G. J. Conklin;S. S. Hemami

  • Affiliations:
  • Real Networks Inc., Seattle, WA;-

  • Venue:
  • IEEE Transactions on Circuits and Systems for Video Technology
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

A temporally scalable video coding algorithm allows extraction of video of multiple frame rates from a single coded stream. In recent years, several video coding techniques have been proposed that provide temporal scalability using subband coding, both without and with motion compensation. With a two-band subband decomposition applied hierarchically, frame rates halve after each filtering operation. Alternatively, motion-compensated prediction (as used in MPEG) can provide temporal scalability and the same frame rates as temporal subband coding through strategic placement of reference frames and selective decoding of frames. This paper compares three temporal coding techniques with respect to providing temporal scalability: temporal subband coding (TSB), motion-compensated temporal subband coding (MC-TSB), and motion-compensated prediction (MCP). Predicted rate-distortion performances at full- and lower frame rates and experimental quantitative and visual performances from coding several video sequences are compared. The comparison is explicitly for temporal coding when the dimensionality of the subsequent source coding is held constant; any spatial or higher dimensional source coding can follow. In theory and in practice, MCP and MC-TSB always outperform TSB. For high-bit-rate full-frame-rate video, the performances of MCP and MC-TSB are approximately equivalent. However, to provide temporal scalability, MCP clearly provides the best performance in terms of visual quality, quantitative quality, and bit rate of the lower frame-rate video