iSwitch: coordinating and optimizing renewable energy powered server clusters

  • Authors:
  • Chao Li;Amer Qouneh;Tao Li

  • Affiliations:
  • University of Florida;University of Florida;University of Florida

  • Venue:
  • Proceedings of the 39th Annual International Symposium on Computer Architecture
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Large-scale computing systems such as data centers are facing increasing pressure to cap their carbon footprint. Integrating emerging clean energy solutions into computer system design therefore gains great significance in the green computing era. While some pioneering work on tracking variable power budget show promising energy efficiency, they are not suitable for data centers due to lack of performance guarantee when renewable generation is low and fluctuant. In addition, our characterization of wind power behavior reveals that data centers designed to track the intermittent renewable power incur up to 4X performance loss due to inefficient and redundant load matching activities. As a result, mitigating operational overhead while still maintaining desired energy utilization becomes the most significant challenge in managing server clusters on intermittent renewable energy generation. In this paper we take a first step in digging into the operational overhead of renewable energy powered data center. We propose iSwitch, a lightweight server power management that follows renewable power variation characteristics, leverages existing system infrastructures, and applies supply/load cooperative scheme to mitigate the performance overhead. Comparing with state-of-the-art renewable energy driven system design, iSwitch could mitigate average network traffic by 75%, peak network traffic by 95%, and reduce 80% job waiting time while still maintaining 96% renewable energy utilization. We expect that our work can help computer architects make informed decisions on sustainable and high-performance system design.