Minimum-risk training of approximate CRF-based NLP systems

  • Authors:
  • Veselin Stoyanov;Jason Eisner

  • Affiliations:
  • Johns Hopkins University, Baltimore, MD;Johns Hopkins University, Baltimore, MD

  • Venue:
  • NAACL HLT '12 Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Conditional Random Fields (CRFs) are a popular formalism for structured prediction in NLP. It is well known how to train CRFs with certain topologies that admit exact inference, such as linear-chain CRFs. Some NLP phenomena, however, suggest CRFs with more complex topologies. Should such models be used, considering that they make exact inference intractable? Stoyanov et al. (2011) recently argued for training parameters to minimize the task-specific loss of whatever approximate inference and decoding methods will be used at test time. We apply their method to three NLP problems, showing that (i) using more complex CRFs leads to improved performance, and that (ii) minimum-risk training learns more accurate models.