On significance of the least significant bits for differential privacy

  • Authors:
  • Ilya Mironov

  • Affiliations:
  • Microsoft Research Silicon Valley, Mountain View, CA, USA

  • Venue:
  • Proceedings of the 2012 ACM conference on Computer and communications security
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a new type of vulnerability present in many implementations of differentially private mechanisms. In particular, all four publicly available general purpose systems for differentially private computations are susceptible to our attack. The vulnerability is based on irregularities of floating-point implementations of the privacy-preserving Laplacian mechanism. Unlike its mathematical abstraction, the textbook sampling procedure results in a porous distribution over double-precision numbers that allows one to breach differential privacy with just a few queries into the mechanism. We propose a mitigating strategy and prove that it satisfies differential privacy under some mild assumptions on available implementation of floating-point arithmetic.