Robust classification and analysis of anatomical surfaces using 3D skeletons

  • Authors:
  • D. Reniers;A. Jalba;A. Telea

  • Affiliations:
  • Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands;Department of Mathematics and Computer Science, Eindhoven University of Technology, the Netherlands;Institute for Mathematics and Computer Science, University of Groningen, the Netherlands

  • Venue:
  • EG VCBM'08 Proceedings of the First Eurographics conference on Visual Computing for Biomedicine
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a method for computing a surface classifier that can be used to detect convex ridges on voxel sur- faces extracted from 3D scans. In contrast to classical approaches based on (discrete) curvature computations, which can be sensitive to various types of noise, we propose here a new method that detects convex ridges on such surfaces, based on the computation of the surface's 3D skeleton. We use a suitable robust, noise-resistant skeletonization algorithm to extract the full 3D skeleton of the given surface, and subsequently compute a surface classifier that separates convex ridges from quasi-flat regions, using the feature points of the simplified skeleton. We demonstrate our method on voxel surfaces extracted from actual anatomical scans, with a focus on cortical surfaces, and compare our results with curvature-based classifiers. As a second application of the 3D skeleton, we show how a partitioning of the brain skeleton can be used in a preprocessing step for the brain surface analysis.