Defining and computing curve-skeletons with medial geodesic function

  • Authors:
  • Tamal K. Dey;Jian Sun

  • Affiliations:
  • The Ohio State University, Columbus, OH;The Ohio State University, Columbus, OH

  • Venue:
  • SGP '06 Proceedings of the fourth Eurographics symposium on Geometry processing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many applications in geometric modeling, computer graphics, visualization and computer vision benefit from a reduced representation called curve-skeletons of a shape. These are curves possibly with branches which compactly represent the shape geometry and topology. The lack of a proper mathematical definition has been a bottleneck in developing and applying the the curve-skeletons. A set of desirable properties of these skeletons has been identified and the existing algorithms try to satisfy these properties mainly through a procedural definition. We define a function called medial geodesic on the medial axis which leads to a methematical definition and an approximation algorithm for curve-skeletons. Empirical study shows that the algorithm is robust against noise, operates well with a single user parameter, and produces curve-skeletons with the desirable properties. Moreover, the curve-skeletons can be associated with additional attributes that follow naturally from the definition. These attributes capture shape eccentricity, a local measure of how far a shape is away from a tubular one.