The acoustic emotion gaussians model for emotion-based music annotation and retrieval

  • Authors:
  • Ju-Chiang Wang;Yi-Hsuan Yang;Hsin-Min Wang;Shyh-Kang Jeng

  • Affiliations:
  • National Taiwan University, Taipei City, Taiwan Roc;Academia Sinica, Taipei City, Taiwan Roc;Academia Sinica, Taipei City, Taiwan Roc;National Taiwan University, Taipei City, Taiwan Roc

  • Venue:
  • Proceedings of the 20th ACM international conference on Multimedia
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

One of the most exciting but challenging endeavors in music research is to develop a computational model that comprehends the affective content of music signals and organizes a music collection according to emotion. In this paper, we propose a novel acoustic emotion Gaussians (AEG) model that defines a proper generative process of emotion perception in music. As a generative model, AEG permits easy and straightforward interpretations of the model learning processes. To bridge the acoustic feature space and music emotion space, a set of latent feature classes, which are learned from data, is introduced to perform the end-to-end semantic mappings between the two spaces. Based on the space of latent feature classes, the AEG model is applicable to both automatic music emotion annotation and emotion-based music retrieval. To gain insights into the AEG model, we also provide illustrations of the model learning process. A comprehensive performance study is conducted to demonstrate the superior accuracy of AEG over its predecessors, using two emotion annotated music corpora MER60 and MTurk. Our results show that the AEG model outperforms the state-of-the-art methods in automatic music emotion annotation. Moreover, for the first time a quantitative evaluation of emotion-based music retrieval is reported.