Concurrent number cruncher: an efficient sparse linear solver on the GPU

  • Authors:
  • Luc Buatois;Guillaume Caumon;Bruno Lévy

  • Affiliations:
  • Gocad Research Group, INRIA, Nancy Université, France;ENSG, CRPG, Nancy Université, France;ALICE, INRIA Lorraine, Nancy, France

  • Venue:
  • HPCC'07 Proceedings of the Third international conference on High Performance Computing and Communications
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

A wide class of geometry processing and PDE resolution methods needs to solve a linear system, where the non-zero pattern of the matrix is dictated by the connectivity matrix of the mesh. The advent of GPUs with their ever-growing amount of parallel horsepower makes them a tempting resource for such numerical computations. This can be helped by new APIs (CTM from ATI and CUDA from NVIDIA) which give a direct access to the multithreaded computational resources and associated memory bandwidth of GPUs; CUDA even provides a BLAS implementation but only for dense matrices (CuBLAS). However, existing GPU linear solvers are restricted to specific types of matrices, or use non-optimal compressed row storage strategies. By combining recent GPU programming techniques with supercomputing strategies (namely block compressed row storage and register blocking), we implement a sparse general-purpose linear solver which outperforms leading-edge CPU counterparts (MKL / ACML).