3D semantic map computation based on depth map and video image

  • Authors:
  • Włodzimierz Kasprzak;Maciej Stefańczyk

  • Affiliations:
  • Industrial Research Institute for Automation and Measurements, Warszawa, Poland;Institute of Control and Computation Engineering, Warsaw University of Technology, Warsaw, Poland

  • Venue:
  • ICCVG'12 Proceedings of the 2012 international conference on Computer Vision and Graphics
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

A model-based object recognition in video and depth images is proposed for the purpose of semantic map creation in mobile robotics. Three types of objects are modeled: a human silhouette, a chair/table and corridor walls. A bi-driven hypothesis generation and verification strategy is outlined. The object model includes a hierarchic semantic nets, combined with a graph of constraints and a Bayesian network for hypothesis generation and evaluation. For the purpose of model-to-image matching we define an incomplete constraint satisfaction problem and solve it. Our CSP-search allows partial assignment solutions and uses a stochastic inference to provide judgments of such solutions. The verification of hypotheses is due to a top-down occlusion propagation process, that explains why some object parts are hidden or occluded.