Polyhedral-based data reuse optimization for configurable computing

  • Authors:
  • Louis-Noel Pouchet;Peng Zhang;P. Sadayappan;Jason Cong

  • Affiliations:
  • University of California Los Angeles, Los Angeles, CA, USA;University of California Los Angeles, Los Angeles, CA, USA;Ohio State University, Columbus, OH, USA;University of California Los Angeles, Los Angeles, CA, USA

  • Venue:
  • Proceedings of the ACM/SIGDA international symposium on Field programmable gate arrays
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many applications, such as medical imaging, generate intensive data traffic between the FPGA and off-chip memory. Significant improvements in the execution time can be achieved with effective utilization of on-chip (scratchpad) memories, associated with careful software-based data reuse and communication scheduling techniques. We present a fully automated C-to-FPGA framework to address this problem. Our framework effectively implements data reuse through aggressive loop transformation-based program restructuring. In addition, our proposed framework automatically implements critical optimizations for performance such as task-level parallelization, loop pipelining, and data prefetching. We leverage the power and expressiveness of the polyhedral compilation model to develop a multi-objective optimization system for off-chip communications management. Our technique can satisfy hardware resource constraints (scratchpad size) while still aggressively exploiting data reuse. Our approach can also be used to reduce the on-chip buffer size subject to bandwidth constraint. We also implement a fast design space exploration technique for effective optimization of program performance using the Xilinx high-level synthesis tool.