Evolving gaits for physical robots with the HyperNEAT generative encoding: the benefits of simulation

  • Authors:
  • Suchan Lee;Jason Yosinski;Kyrre Glette;Hod Lipson;Jeff Clune

  • Affiliations:
  • Cornell University;Cornell University;University of Oslo, Norway;Cornell University;Cornell University and University of Wyoming

  • Venue:
  • EvoApplications'13 Proceedings of the 16th European conference on Applications of Evolutionary Computation
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Creating gaits for physical robots is a longstanding and open challenge. Recently, the HyperNEAT generative encoding was shown to automatically discover a variety of gait regularities, producing fast, coordinated gaits, but only for simulated robots. A follow-up study found that HyperNEAT did not produce impressive gaits when they were evolved directly on a physical robot. A simpler encoding hand-tuned to produce regular gaits was tried on the same robot, and outperformed HyperNEAT, but these gaits were first evolved in simulation before being transferred to the robot. In this paper, we tested the hypothesis that the beneficial properties of HyperNEAT would outperform the simpler encoding if HyperNEAT gaits are first evolved in simulation before being transferred to reality. That hypothesis was confirmed, resulting in the fastest gaits yet observed for this robot, including those produced by nine different algorithms from three previous papers describing gaitgenerating techniques for this robot. This result is important because it confirms that the early promise shown by generative encodings, specifically HyperNEAT, are not limited to simulation, but work on challenging real-world engineering challenges such as evolving gaits for real robots.