A hox gene inspired generative approach to evolving robot morphology

  • Authors:
  • Eivind Samuelsen;Kyrre Glette;Jim Torresen

  • Affiliations:
  • University of Oslo, Oslo, Norway;University of Oslo, Oslo, Norway;University of Oslo, Oslo, Norway

  • Venue:
  • Proceedings of the 15th annual conference on Genetic and evolutionary computation
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes an approach to representing robot morphology and control, using a two-level description linked to two different physical axes of development. The bioinspired encoding produces robots with animal-like bilateral limbed morphology with co-evolved control parameters using a central pattern generator-based modular artificial neural network. Experiments are performed on optimizing a simple simulated locomotion problem, using multi-objective evolution with two secondary objectives. The results show that the representation is capable of producing a variety of viable designs even with a relatively restricted set of parameters and a very simple control system. Furthermore, the utility of a cumulative encoding over a non-cumulative approach is demonstrated. We also show that the representation is viable for real-life reproduction by automatically generating CAD files, 3D printing the limbs, and attaching off-the-shelf servomotors.