Improving the scalability of a multi-core web server

  • Authors:
  • Raoufehsadat Hashemian;Diwakar Krishnamurthy;Martin Arlitt;Niklas Carlsson

  • Affiliations:
  • University of Calgary, Calgary, Alberta, Canada;University of Calgary, Calgary, Alberta, Canada;HP Labs, Palo Alto, California, USA;Linkoping University, Linkoping , Sweden

  • Venue:
  • Proceedings of the 4th ACM/SPEC International Conference on Performance Engineering
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Improving the performance and scalability of Web servers enhances user experiences and reduces the costs of providing Web-based services. The advent of Multi-core technology motivates new studies to understand how efficiently Web servers utilize such hardware. This paper presents a detailed performance study of a Web server application deployed on a modern 2 socket, 4-cores per socket server. Our study show that default, "out-of-the-box" Web server configurations can cause the system to scale poorly with increasing core counts. We study two different types of workloads, namely a workload that imposes intense TCP/IP related OS activity and the SPECweb2009 Support workload, which incurs more application-level processing. We observe that the scaling behaviour is markedly different for these two types of workloads, mainly due to the difference in the performance characteristics of static and dynamic requests. The results of our experiments reveal that with workload-specific Web server configuration strategies a modern Multi-core server can be utilized up to 80% while still serving requests without significant queuing delays; utilizations beyond 90% are also possible, while still serving requests with acceptable response times.