A node-capacitated okamura-seymour theorem

  • Authors:
  • James R. Lee;Manor Mendel;Mohammad Moharrami

  • Affiliations:
  • University of Washington, Seattle, WA, USA;Open University of Israel, Raanana, Israel;University of Washington, Seattle, WA, USA

  • Venue:
  • Proceedings of the forty-fifth annual ACM symposium on Theory of computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The classical Okamura-Seymour theorem states that for an edge-capacitated, multi-commodity flow instance in which all terminals lie on a single face of a planar graph, there exists a feasible concurrent flow if and only if the cut conditions are satisfied. Simple examples show that a similar theorem is impossible in the node-capacitated setting. Nevertheless, we prove that an approximate flow/cut theorem does hold: For some universal ε 0, if the node cut conditions are satisfied, then one can simultaneously route an ε-fraction of all the demands. This answers an open question of Chekuri and Kawarabayashi. More generally, we show that this holds in the setting of multi-commodity polymatroid networks introduced by Chekuri, et. al. Our approach employs a new type of random metric embedding in order to round the convex programs corresponding to these more general flow problems.