Dynamic cache management in multi-core architectures through run-time adaptation

  • Authors:
  • Fazal Hameed;Lars Bauer;Jörg Henkel

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • DATE '12 Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Non-Uniform Cache Access (NUCA) architectures provide a potential solution to reduce the average latency for the last-level-cache (LLC), where the cache is organized into per-core local and remote partitions. Recent research has demonstrated the benefits of cooperative cache sharing among local and remote partitions. However, ignoring cache access patterns of concurrently executing applications sharing the local and remote partitions can cause inter-partition contention that reduces the overall instruction throughput. We propose a dynamic cache management scheme for LLC in NUCA-based architectures, which reduces inter-partition contention. Our proposed scheme provides efficient cache sharing by adapting migration, insertion, and promotion policies in response to the dynamic requirements of the individual applications with different cache access behaviors. Our adaptive cache management scheme allows individual cores to steal cache capacity from remote partitions to achieve better resource utilization. On average, our proposed scheme increases the performance (instructions per cycle) by 28% (minimum 8.4%, maximum 75%) compared to a private LLC organization.