Parameterized Complexity of DPLL Search Procedures

  • Authors:
  • Olaf Beyersdorff;Nicola Galesi;Massimo Lauria

  • Affiliations:
  • University of Leeds and Sapienza University of Rome;Sapienza University of Rome;KTH Royal Institute of Technology

  • Venue:
  • ACM Transactions on Computational Logic (TOCL)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game that models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires nΩ(k) steps for a nontrivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked by Beyersdorff et al. [2012] of understanding the Resolution complexity of this family of formulas.