coRide: carpool service with a win-win fare model for large-scale taxicab networks

  • Authors:
  • Desheng Zhang;Ye Li;Fan Zhang;Mingming Lu;Yunhuai Liu;Tian He

  • Affiliations:
  • University of Minnesota;Chinese Academy of Sciences, China;Chinese Academy of Sciences, China;Chinese Academy of Sciences, China;Third Research Institute of Ministry of Public Security, China;University of Minnesota

  • Venue:
  • Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Carpooling has long held the promise of reducing gas consumption by decreasing mileage to deliver co-riders. Although ad hoc carpools already exist in the real world through private arrangements, little research on the topic has been done. In this paper, we present the first systematic work to design, implement, and evaluate a carpool service, called coRide, in a large-scale taxicab network intended to reduce total mileage for less gas consumption. Our coRide system consists of three components, a dispatching cloud server, passenger clients, and an onboard customized device, called TaxiBox. In the coRide design, in response to the delivery requests of passengers, dispatching cloud servers calculate cost-efficient carpool routes for taxicab drivers and thus lower fares for the individual passengers. To improve coRide's efficiency in mileage reduction, we formulate a NP-hard route calculation problem under different practical constraints. We then provide (i) an optimal algorithm using Linear Programming, (ii) a 2 approximation algorithm with a polynomial complexity, and (iii) its corresponding online version. To encourage coRide's adoption, we present a win-win fare model as the incentive mechanism for passengers and drivers to participate. We evaluate coRide with a real world dataset of more than 14,000 taxicabs, and the results show that compared with the ground truth, our service can reduce 33% of total mileage; with our win-win fare model, we can lower passenger fares by 49% and simultaneously increase driver profit by 76%.